Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
IEEE Trans Neural Netw Learn Syst ; PP2023 Jun 07.
Article in English | MEDLINE | ID: covidwho-20236897

ABSTRACT

Detecting pneumonia, especially coronavirus disease 2019 (COVID-19), from chest X-ray (CXR) images is one of the most effective ways for disease diagnosis and patient triage. The application of deep neural networks (DNNs) for CXR image classification is limited due to the small sample size of the well-curated data. To tackle this problem, this article proposes a distance transformation-based deep forest framework with hybrid-feature fusion (DTDF-HFF) for accurate CXR image classification. In our proposed method, hybrid features of CXR images are extracted in two ways: hand-crafted feature extraction and multigrained scanning. Different types of features are fed into different classifiers in the same layer of the deep forest (DF), and the prediction vector obtained at each layer is transformed to form distance vector based on a self-adaptive scheme. The distance vectors obtained by different classifiers are fused and concatenated with the original features, then input into the corresponding classifier at the next layer. The cascade grows until DTDF-HFF can no longer gain benefits from the new layer. We compare the proposed method with other methods on the public CXR datasets, and the experimental results show that the proposed method can achieve state-of-the art (SOTA) performance. The code will be made publicly available at https://github.com/hongqq/DTDF-HFF.

2.
Lancet Infect Dis ; 23(5): 556-567, 2023 05.
Article in English | MEDLINE | ID: covidwho-2184728

ABSTRACT

BACKGROUND: The global surge in the omicron (B.1.1.529) variant has resulted in many individuals with hybrid immunity (immunity developed through a combination of SARS-CoV-2 infection and vaccination). We aimed to systematically review the magnitude and duration of the protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against infection and severe disease caused by the omicron variant. METHODS: For this systematic review and meta-regression, we searched for cohort, cross-sectional, and case-control studies in MEDLINE, Embase, Web of Science, ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, the WHO COVID-19 database, and Europe PubMed Central from Jan 1, 2020, to June 1, 2022, using keywords related to SARS-CoV-2, reinfection, protective effectiveness, previous infection, presence of antibodies, and hybrid immunity. The main outcomes were the protective effectiveness against reinfection and against hospital admission or severe disease of hybrid immunity, hybrid immunity relative to previous infection alone, hybrid immunity relative to previous vaccination alone, and hybrid immunity relative to hybrid immunity with fewer vaccine doses. Risk of bias was assessed with the Risk of Bias In Non-Randomized Studies of Interventions Tool. We used log-odds random-effects meta-regression to estimate the magnitude of protection at 1-month intervals. This study was registered with PROSPERO (CRD42022318605). FINDINGS: 11 studies reporting the protective effectiveness of previous SARS-CoV-2 infection and 15 studies reporting the protective effectiveness of hybrid immunity were included. For previous infection, there were 97 estimates (27 with a moderate risk of bias and 70 with a serious risk of bias). The effectiveness of previous infection against hospital admission or severe disease was 74·6% (95% CI 63·1-83·5) at 12 months. The effectiveness of previous infection against reinfection waned to 24·7% (95% CI 16·4-35·5) at 12 months. For hybrid immunity, there were 153 estimates (78 with a moderate risk of bias and 75 with a serious risk of bias). The effectiveness of hybrid immunity against hospital admission or severe disease was 97·4% (95% CI 91·4-99·2) at 12 months with primary series vaccination and 95·3% (81·9-98·9) at 6 months with the first booster vaccination after the most recent infection or vaccination. Against reinfection, the effectiveness of hybrid immunity following primary series vaccination waned to 41·8% (95% CI 31·5-52·8) at 12 months, while the effectiveness of hybrid immunity following first booster vaccination waned to 46·5% (36·0-57·3) at 6 months. INTERPRETATION: All estimates of protection waned within months against reinfection but remained high and sustained for hospital admission or severe disease. Individuals with hybrid immunity had the highest magnitude and durability of protection, and as a result might be able to extend the period before booster vaccinations are needed compared to individuals who have never been infected. FUNDING: WHO COVID-19 Solidarity Response Fund and the Coalition for Epidemic Preparedness Innovations.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Cross-Sectional Studies , Reinfection/prevention & control , Adaptive Immunity
3.
Vaccines (Basel) ; 10(12)2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2123912

ABSTRACT

Background: Many serological assays to detect SARS-CoV-2 antibodies were developed during the COVID-19 pandemic. Differences in the detection mechanism of SARS-CoV-2 serological assays limited the comparability of seroprevalence estimates for populations being tested. Methods: We conducted a systematic review and meta-analysis of serological assays used in SARS-CoV-2 population seroprevalence surveys, searching for published articles, preprints, institutional sources, and grey literature between 1 January 2020, and 19 November 2021. We described features of all identified assays and mapped performance metrics by the manufacturers, third-party head-to-head, and independent group evaluations. We compared the reported assay performance by evaluation source with a mixed-effect beta regression model. A simulation was run to quantify how biased assay performance affects population seroprevalence estimates with test adjustment. Results: Among 1807 included serosurveys, 192 distinctive commercial assays and 380 self-developed assays were identified. According to manufacturers, 28.6% of all commercial assays met WHO criteria for emergency use (sensitivity [Sn.] >= 90.0%, specificity [Sp.] >= 97.0%). However, manufacturers overstated the absolute values of Sn. of commercial assays by 1.0% [0.1, 1.4%] and 3.3% [2.7, 3.4%], and Sp. by 0.9% [0.9, 0.9%] and 0.2% [−0.1, 0.4%] compared to third-party and independent evaluations, respectively. Reported performance data was not sufficient to support a similar analysis for self-developed assays. Simulations indicate that inaccurate Sn. and Sp. can bias seroprevalence estimates adjusted for assay performance; the error level changes with the background seroprevalence. Conclusions: The Sn. and Sp. of the serological assay are not fixed properties, but varying features depending on the testing population. To achieve precise population estimates and to ensure the comparability of seroprevalence, serosurveys should select assays with high performance validated not only by their manufacturers and adjust seroprevalence estimates based on assured performance data. More investigation should be directed to consolidating the performance of self-developed assays.

4.
PLoS Med ; 19(11): e1004107, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2116445

ABSTRACT

BACKGROUND: Our understanding of the global scale of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection remains incomplete: Routine surveillance data underestimate infection and cannot infer on population immunity; there is a predominance of asymptomatic infections, and uneven access to diagnostics. We meta-analyzed SARS-CoV-2 seroprevalence studies, standardized to those described in the World Health Organization's Unity protocol (WHO Unity) for general population seroepidemiological studies, to estimate the extent of population infection and seropositivity to the virus 2 years into the pandemic. METHODS AND FINDINGS: We conducted a systematic review and meta-analysis, searching MEDLINE, Embase, Web of Science, preprints, and grey literature for SARS-CoV-2 seroprevalence published between January 1, 2020 and May 20, 2022. The review protocol is registered with PROSPERO (CRD42020183634). We included general population cross-sectional and cohort studies meeting an assay quality threshold (90% sensitivity, 97% specificity; exceptions for humanitarian settings). We excluded studies with an unclear or closed population sample frame. Eligible studies-those aligned with the WHO Unity protocol-were extracted and critically appraised in duplicate, with risk of bias evaluated using a modified Joanna Briggs Institute checklist. We meta-analyzed seroprevalence by country and month, pooling to estimate regional and global seroprevalence over time; compared seroprevalence from infection to confirmed cases to estimate underascertainment; meta-analyzed differences in seroprevalence between demographic subgroups such as age and sex; and identified national factors associated with seroprevalence using meta-regression. We identified 513 full texts reporting 965 distinct seroprevalence studies (41% low- and middle-income countries [LMICs]) sampling 5,346,069 participants between January 2020 and April 2022, including 459 low/moderate risk of bias studies with national/subnational scope in further analysis. By September 2021, global SARS-CoV-2 seroprevalence from infection or vaccination was 59.2%, 95% CI [56.1% to 62.2%]. Overall seroprevalence rose steeply in 2021 due to infection in some regions (e.g., 26.6% [24.6 to 28.8] to 86.7% [84.6% to 88.5%] in Africa in December 2021) and vaccination and infection in others (e.g., 9.6% [8.3% to 11.0%] in June 2020 to 95.9% [92.6% to 97.8%] in December 2021, in European high-income countries [HICs]). After the emergence of Omicron in March 2022, infection-induced seroprevalence rose to 47.9% [41.0% to 54.9%] in Europe HIC and 33.7% [31.6% to 36.0%] in Americas HIC. In 2021 Quarter Three (July to September), median seroprevalence to cumulative incidence ratios ranged from around 2:1 in the Americas and Europe HICs to over 100:1 in Africa (LMICs). Children 0 to 9 years and adults 60+ were at lower risk of seropositivity than adults 20 to 29 (p < 0.001 and p = 0.005, respectively). In a multivariable model using prevaccination data, stringent public health and social measures were associated with lower seroprevalence (p = 0.02). The main limitations of our methodology include that some estimates were driven by certain countries or populations being overrepresented. CONCLUSIONS: In this study, we observed that global seroprevalence has risen considerably over time and with regional variation; however, over one-third of the global population are seronegative to the SARS-CoV-2 virus. Our estimates of infections based on seroprevalence far exceed reported Coronavirus Disease 2019 (COVID-19) cases. Quality and standardized seroprevalence studies are essential to inform COVID-19 response, particularly in resource-limited regions.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Adult , Humans , COVID-19/epidemiology , Seroepidemiologic Studies , Cross-Sectional Studies , Pandemics
5.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2066117

ABSTRACT

Vascular replacement is one of the most effective tools to solve cardiovascular diseases, but due to the limitations of autologous transplantation, size mismatch, etc., the blood vessels for replacement are often in short supply. The emergence of artificial blood vessels with 3D bioprinting has been expected to solve this problem. Blood vessel prosthesis plays an important role in the field of cardiovascular medical materials. However, a small-diameter blood vessel prosthesis (diameter < 6 mm) is still unable to achieve wide clinical application. In this paper, a response surface analysis was firstly utilized to obtain the relationship between the contact angle and the gelatin/sodium alginate mixed hydrogel solution at different temperatures and mass percentages. Then, the self-developed 3D bioprinter was used to obtain the optimal printing spacing under different conditions through row spacing, printing, and verifying the relationship between the contact angle and the printing thickness. Finally, the relationship between the blood vessel wall thickness and the contact angle was obtained by biofabrication with 3D bioprinting, which can also confirm the controllability of the vascular membrane thickness molding. It lays a foundation for the following study of the small caliber blood vessel printing molding experiment.


Subject(s)
Bioprinting , Blood Substitutes , Alginates , Blood Vessel Prosthesis , Gelatin , Hydrogels/pharmacology , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
6.
BMJ Glob Health ; 7(8)2022 08.
Article in English | MEDLINE | ID: covidwho-2001824

ABSTRACT

INTRODUCTION: Estimating COVID-19 cumulative incidence in Africa remains problematic due to challenges in contact tracing, routine surveillance systems and laboratory testing capacities and strategies. We undertook a meta-analysis of population-based seroprevalence studies to estimate SARS-CoV-2 seroprevalence in Africa to inform evidence-based decision making on public health and social measures (PHSM) and vaccine strategy. METHODS: We searched for seroprevalence studies conducted in Africa published 1 January 2020-30 December 2021 in Medline, Embase, Web of Science and Europe PMC (preprints), grey literature, media releases and early results from WHO Unity studies. All studies were screened, extracted, assessed for risk of bias and evaluated for alignment with the WHO Unity seroprevalence protocol. We conducted descriptive analyses of seroprevalence and meta-analysed seroprevalence differences by demographic groups, place and time. We estimated the extent of undetected infections by comparing seroprevalence and cumulative incidence of confirmed cases reported to WHO. PROSPERO: CRD42020183634. RESULTS: We identified 56 full texts or early results, reporting 153 distinct seroprevalence studies in Africa. Of these, 97 (63%) were low/moderate risk of bias studies. SARS-CoV-2 seroprevalence rose from 3.0% (95% CI 1.0% to 9.2%) in April-June 2020 to 65.1% (95% CI 56.3% to 73.0%) in July-September 2021. The ratios of seroprevalence from infection to cumulative incidence of confirmed cases was large (overall: 100:1, ranging from 18:1 to 954:1) and steady over time. Seroprevalence was highly heterogeneous both within countries-urban versus rural (lower seroprevalence for rural geographic areas), children versus adults (children aged 0-9 years had the lowest seroprevalence)-and between countries and African subregions. CONCLUSION: We report high seroprevalence in Africa suggesting greater population exposure to SARS-CoV-2 and potential protection against COVID-19 severe disease than indicated by surveillance data. As seroprevalence was heterogeneous, targeted PHSM and vaccination strategies need to be tailored to local epidemiological situations.


Subject(s)
COVID-19 , Adult , Africa/epidemiology , COVID-19/epidemiology , Child , Europe , Humans , SARS-CoV-2 , Seroepidemiologic Studies
7.
Chemosphere ; 307(Pt 3): 136028, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1982736

ABSTRACT

Carbonaceous fractions throughout the normal period and lockdown period (LP) before and during COVID-19 outbreak were analyzed in a polluted city, Zhengzhou, China. During LP, fine particulate matters, elemental carbon (EC), and secondary organic aerosol (SOC) concentrations fell significantly (29%, 32% and 21%), whereas organic carbon (OC) only decreased by 4%. Furthermore, the mean OC/EC ratio increased (from 3.8 to 5.4) and the EC fractions declined dramatically, indicating a reduction in vehicle emission contribution. The fact that OC1-3, EC, and EC1 had good correlations suggested that OC1-3 emanated from primary emissions. OC4 was partly from secondary generation, and increased correlations of OC4 with OC1-3 during LP indicated a decrease in the share of SOC. SOC was more impacted by NO2 throughout the research phase, thereby the concentrations were lower during LP when NO2 levels were lower. SOC and relative humidity (RH) were found to be positively associated only when RH was below 80% and 60% during the normal period (NP) and LP, respectively. SOC, Coal combustion, gasoline vehicles, biomass burning, diesel vehicles were identified as major sources by the Positive Matrix Factorization (PMF) model. Contribution of SOC apportioned by PMF was 3.4 and 3.0 µg/m3, comparable to the calculated findings (3.8 and 3.0 µg/m3) during the two periods. During LP, contributions from gasoline vehicles dropped the most, from 47% to 37% and from 7.1 to 4.3 µg/m3, contribution of biomass burning and diesel vehicles fell by 3% (0.6 µg/m3) and 1% (0.4 µg/m3), and coal combustion concentrations remained nearly constant. The findings of this study highlight the immense importance of anthropogenic source reduction in carbonaceous component variations and SOC generation, and provide significant insight into the temporal variations and sources of carbonaceous fractions in polluted cities.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , COVID-19/epidemiology , Carbon/analysis , China , Cities , Coal , Communicable Disease Control , Environmental Monitoring , Gasoline , Humans , Nitrogen Dioxide , Particulate Matter/analysis , Respiratory Aerosols and Droplets , Seasons , Vehicle Emissions
8.
Biosens Bioelectron ; 192: 113493, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1316398

ABSTRACT

The CRISPR-based nucleic acid detection systems have shown great potential for point-of-care testing of viral pathogens, especially in the context of COVID-19 pandemic. Here we optimize several key parameters of reaction chemistry and develop a Chemical Enhanced CRISPR Detection system for nucleic acid (termed CECRID). For the Cas12a/Cas13a-based signal detection phase, we determine buffer conditions and substrate range for optimal detection performance, and reveal a crucial role of bovine serum albumin in enhancing trans-cleavage activity of Cas12a/Cas13a effectors. By comparing several chemical additives, we find that addition of L-proline can secure or enhance Cas12a/Cas13a detection capability. For isothermal amplification phase with typical LAMP and RPA methods, inclusion of L-proline can also enhance specific target amplification as determined by CRISPR detection. Using SARS-CoV-2 pseudovirus, we demonstrate CECRID has enhanced detection sensitivity over chemical additive-null method with either fluorescence or lateral flow strip readout. Thus, CECRID provides an improved detection power and system robustness, and helps to develop enhanced reagent formula or test kit towards practical application of CRISPR-based diagnostics.


Subject(s)
Biosensing Techniques , COVID-19 , CRISPR-Cas Systems/genetics , Humans , Nucleic Acid Amplification Techniques , Pandemics , RNA, Viral , SARS-CoV-2
9.
iScience ; 24(3): 102148, 2021 Mar 19.
Article in English | MEDLINE | ID: covidwho-1103989

ABSTRACT

RNA viruses are responsible for many zoonotic diseases that post great challenges for public health. Effective therapeutics against these viral infections remain limited. Here, we deployed a computational framework for host-based drug repositioning to predict potential antiviral drugs from 2,352 approved drugs and 1,062 natural compounds embedded in herbs of traditional Chinese medicine. By systematically interrogating public genetic screening data, we comprehensively cataloged host dependency genes (HDGs) that are indispensable for successful viral infection corresponding to 10 families and 29 species of RNA viruses. We then utilized these HDGs as potential drug targets and interrogated extensive drug-target interactions through database retrieval, literature mining, and de novo prediction using artificial intelligence-based algorithms. Repurposed drugs or natural compounds were proposed against many viral pathogens such as coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), flaviviruses, and influenza viruses. This study helps to prioritize promising drug candidates for in-depth evaluation against these virus-related diseases.

SELECTION OF CITATIONS
SEARCH DETAIL